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Ex post Moral Hazard in Crop Insurance:
Costly State Verification or Falsification?
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ABSTRACT

This article examines the extent to which actual crop insurance indemnification
behaviour conforms to the theoretical predictions of two ex post moral hazard
models — costly state verification and costly state falsification — and then
explores whether the closely conforming model can indeed help deter ex post
moral hazard in the United States (US) crop insurance program. The results sug-
gest that indemnification behaviour in crop insurance is more in line with the
costly state verification model. Following the theoretical predictions of the cost-
ly state verification model, however, may not be the optimal policy to deter ex
post moral hazard since it is possible for insured producers to deceive loss
adjusters and for loss magnitudes to not be truthfully verified.

1. INTRODUCTION

There is substantial agricultural economic literature about moral hazard in
the US crop insurance program.? However, these studies mainly dealt with
hidden action or ex ante moral hazard, where the insured takes less care to
prevent a loss than they would if uninsured. In this case, the insured possess
asymmetric information about their likelihood of suffering insurable losses
and the incentive problem exists prior to the resolution of uncertainty.
Another aspect of moral hazard that has not been fully explored in the crop
insurance context is ex post moral hazard. Here the asymmetric information
held by the insured involves the actual magnitude of the economic loss and
the incentive problem exists following the resclution of uncertainty. Therefore,
€x post moral hazard is normally taken as synonymous to insurance fraud
because it occurs after the resolution of uncertainty.

Since the early 1990s, the need to reduce fraud in the US crop insurance
program has been a recognized priority of the US Congress, the US
Department of Agriculture (USDA)}, and the USDA’s Risk Management Agency
(RMA). Current estimates reveal that approximately 5 per cent of all crop
insurance claims may be associated with fraud (US General Accounting Office,
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1999). Therefore, in order to help government policy makers develop strategies
that can mitigate fraud behaviour, it is important to understand the theoreti-
cal underpinnings of crop insurance indemnification behaviour aimed to deter
fraud and to assess whether these theoretical predictions can mitigate fraud
behaviour given the current crop insurance policy structure.

The theoretical literature on how to optimally deter ex post moral hazard
may be divided into two distinct paradigms — costly state verification or cost-
ly state falsification. The costly state verification paradigm attributed to
Townsend (1979) is where the insured knows the actual magnitude of the loss
and the insurer can observe that loss only by incurring a fixed monitoring
cost. Therefore, in this setting, the insurer can choose to eliminate the infor-
mational advantage of the insured, but in so doing must incur some cost. The
relevant economic problem here is to find an optimal contract that utilizes the
costly monitoring technology in an efficient fashion.

In the costly state falsification paradigm, attributed to Lacker and Weinberg
(1989), it is assumed that there is no economically feasible monitoring tech-
nology that can be implemented by the insurer to alleviate the informational
asymmetry. In this model the main assumption is that the insured's private
information on the magnitude of the actual loss is immutable. Costly state fal-
sification occurs because the insured is able to manufacture an observed
claim that exceeds the loss actually suffered, by incurring a resource cost. The
main economic problem in this case is to find an optimal contract that bal-
ances the need for insurance to smooth income with the incentives for claims
falsification that insurance payments provide.

In the crop insurance area, Hyde and Vercammen (1997) is the only study
that addressed the issue of optimal contract form in the presence of ex post
moral hazard. However, their focus is mainly on the implications for optimal
contract form under the condition of costly state verification — both with and
without hidden action moral hazard. Although costly state falsification is
somewhat addressed in the paper it was not the main focus of the modeling
effort. Their purely theoretical findings suggest that the costly state verifica-
tion model more accurately coincides with many important features of actual
crop insurance contracts. Aside from Hyde and Vercammen (1997) there has
been no published study in the crop insurance area that addressed the issue
of both costly state verification and costly state falsification. Furthermore, no
study has yet investigated whether the theoretical predictions from the costly
state verification model or the costly state falsification model more closely
reflect the actual indemnification behaviour in the crop insurance markets.
Only Crocker and Tennyson (1999), who used actual claims data from bodily
injury liability insurance, have empirically examined these predictions.

This article examines the extent to which actual crop insurance indemnifi-
cation behaviour conforms to the theoretical predictions of the two ex post
moral hazard models. This allows us to identify which of the two models can
potentially explain actual crop insurance indemnification behaviour and dis-
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cuss whether the model used can indeed optimally deter ex post moral in the
US crop insurance program. The paper proceeds as follows. First, we review
the economically optimal contract design and the corresponding theoretical
predictions to deter ex post moral hazard, for the case of costly state verifica-
tion and falsification, respectively. Then we use actual crop insurance data to
empirically determine which ex post moral hazard model more closely coin-
cides with actual behaviour. Then we discuss the appropriateness of using
this theoretical paradigm to deter ex post moral hazard in practice, given the
current structure of the US crop insurance program.

2. THEORY

I Costly state verification

The costly state verification paradigm is attributed to the work of Townsend
(1979) and has been examined in an insurance context by Dionne and Viala
(1992), Kaplow (1994), and Bond and Crocker (1997). The theoretical predic-
tions elucidated here are based on the work of Bond and Crocker {1997) and
are discussed in the context of multiple peril crop insurance (MPCI). In this
mode] there exists a continuum of risk averse farmers, each of which possess
a von Neumann Morgenstern utility function U{W), where W, is the wealth of
a farmer in state i. This wealth is a function of profits derived from his farm-
ing operation and his assets. Assume that each farmer has the same initial
wealth W, but may suffer some financial loss due to adverse yields with prob-
ability =. Further assume that when a farmer suffers a loss it is publicly
observable, but the magnitude of that loss is private information to the farmer
suffering the loss. The actual loss can be verified, however, if the insurer bears
the fixed monitoring cost y. Moreover, it is assumed that the farmer cannot
take actions that have the effect of manipulating the monitoring cost v.
Conditional on the farmer suffering a loss due to low yields, the actual mag-
nitude of that loss is denoted as x and is distributed on [J_c, J_C] according to the
probability density function g.

In this situation, an insurance allocation A = { p,r(x)} consists of an insur-
ance premium p, which is paid by the farmer prior to experiencing any loss,
and a state-contingent indemnity payment, 7{x). The farmer’s expected utility
can then be expressed as:

V(A) =7 [UW - p - x +r{x))g(x)dx + (1~ iU - p) (1)

The profit of the insurer can also be written as:

T{A, M) = p - = [r(x)g{x)dx - yr [g(x)dx )

X

where M c [x,X]denotes the range of losses where the insurer monitors (the
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monitoring region). An insurance contract C = {A,M] is a specification of both
an allocation A, and a monitoring region, M.

The magnitude of the actual loss is private information to the farmer, which
places constraints on the structure of an implementable insurance confract.
For example, to obtain truthful revelation of the actual loss due to adverse
yields by the farmer in the no-monitoring region M, the optimal contract must
specify a constant payment 7 for such losses. If not, the insured farmer would
always elect to report the magnitude of loss associated with the highest indem-
nity in M. In addition, were the payment in Me to exceed that associated with
a portion of the monitoring region M, then the insured farmer would elect to
misrepresent any losses in this region of M. Formally, the incentive con-
straints created by the informational asymmetries of this model require that
an optimal contract satisfies:

r(x}—{:F for xeM @)

where T is a constant and Mr is the complement of M.

Therefore, an optimal crop insurance contract with costly state verification
is a solution to the problem that maximizes farmer’s expected utility in (1) sub-
ject to the incentive constraints in (3) and the zero profit constraint for the
insurers I1(A, M) > 0. Following this maximization, the optimal crop insurance
contract with costly state verification entails a fixed payment 7 and no moni-
toring for losses less than a critical value m(> 7). Furthermore, the insured
farmer is monitored and receives full indemnity (r{x)=x) for losses exceeding m.
In other words, an optimal contract entails no monitoring and a fixed indem-
nity payment for small losses, and monitoring with full loss indemnification
for more adverse outcomes (Figure 1). Formal proof of this general result can
be seen in Bond and Crocker (1997) and a proof is also expressed within a
crop insurance context in Hyde and Vercammen (1997). Note also that as the
cost of monitoring y declines, both m and 7 decline as well, resulting in an
expansion of the monitoring region M = (m, X). In the extreme case of costless
monitoring v = 0), insurers verify all claims (M =[x, x| and the insured farm-
ers receive full indemnity for their losses (r(x)=x for every x).

Figure 1. Optimal indemnification profile with costly state verification
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II Costly state falsification
The costly state falsification paradigm was first attributed to Lacker and
Weinberg (1989) and subsequently extended by Crocker and Morgan (1998).
We follow the format of Crocker and Morgan (1998) in the discussion here.
Again we consider a setting in which farmers possess a von Neumann
Morgenstern utility function U{W), where W, is the wealth of a farmer in state
i. As before, all farmers have the same utility function U and initial wealth W,
and may suffer a financial loss due to adverse yields x =& [x,X], the magni-
tude of which is assumed to be private information to the farmer suffering the
loss. Under this paradigm, the farmer can generate an observed claim y that
differs from the actual loss x suffered due to adverse yields.? The difference
between the farmer’s actual loss and the loss observed by the insurer, |x - y|,
is defined here as claims falsification. In order to falsify a claim, the insured
farmer incurs a falsification cost s{x - y), which is assumed to be an increas-
ing function of the amount of falsification.

Assuming that the actual loss is x, the farmer’s final wealth can be
expressed as:

W-x+r-sx-y) (4)

where r is the indemnity payment. Letting n be the probability of a loss occur-
ring due to adverse yields, f be the distribution of the loss magnitudes given
that some loss has occurred, and p be the premium paid by the farmer prior
to the loss occurring, the farmer's expected utility can be written as:

VIC) = [UW +7— p-x - sx-y)f)dx + (- - p) (5

In this case the insurance contract C = (r,y, p) is a specification of a constant
premium p, and an indemnity payment r associated with each observed claim
y. The profit of the insurer can be written as:

M(C) = p - 7 Jrx)f (e )

The revelation principle is used here to characterize a solution because the
magnitude of actual loss is private information (Myerson, 1979). Letting
C = {r(x), y(x)} denote the contractual allocation assigned to an insured who
announces his type to be x, incentive compatibility requires that a contract
must satisfy the following constraint:

UW+rnd-p-x-slx-yx)) 2 UW+ nx) - p-x- glx - ylx))), (7)

for every x,x' ¢ [x, X}

An optimal insurance contract for the costly state falsification case is a
solution to the problem that maximizes farmer’s utility in {5) subject to the
incentive compatibility constraint in (7) and the zero profit constraint for the
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insurersII{A, M) > 0. This maximization results in an optimal insurance con-
tract for costly state falsification where there is overpayment of small claims
(r > y) and underpayment of large claims (r < y). In addition, all insured farm-
ers except those with the smallest (x) or largest (X) possible losses engage in
some claims falsification. Formal proof of this theoretical prediction is seen in
Crocker and Morgan (1998).

The optimal contract under costly state falsification is graphically depicted
in Figure 2. If insurers are able to costlessly observe the actual loss, then the
optimal contract coincides with the 45-degree line and entails full indemnifi-
cation for any losses suffered. On the other hand, when the actual loss is pri-
vate information to the farmer and the insurer can only observe a potentially
falsified claim, the optimal contract exhibits a reduced sensitivity of the
indemnity to the observed claim amount. This feature reduces the returns to
claims falsification. At the extreme, a fixed indemnity payment Fcan eliminate
the incentive to falsify completely, but this fixed payment does not smooth the
wealth of the farmer over the various loss states. Therefore, the optimal con-
tract for the case of costly state falsification exhibits a tradeoff between reduc-
ing incentives for claims falsification and income smoothing.

Figure 2. Optimal indemnification profile with costly state falsification
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3. DATA AND EMPIRICAL METHODS

This study utilizes MPCI data from the Risk Management Agency (RMA) of the
US Department of Agriculture (USDA) for reinsurance year (RY) 2000. In the
spirit of homogeneity, only MPCI policies for non-irrigated cotton production
are considered for analysis. To further assure a similar claiming environment,
cotton farmers with 65 percent coverage levels, average production history
(APH) of 545 lbs/acre, and price election of $0.62/1b are the only ones con-
sidered in the analysis.* Limiting the observations allow us to estimate a pro-
file with only one threshold level (m). The threshold level determines the
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deductible in crop insurance contracts. In a crop insurance context, the
deductible ($/acre) is defined as:

Deductible = {1 - Coverage level)*APH*Price Election (8)

If we do not limit the observations of interest to have the same coverage
level, APH, and price election, then deductibles for each observation may dif-
fer, and this is not consistent with the theoretical profiles in the preceding sec-
tion. Given our choices of coverage level, APH, and price election, the
deductible in the empirical analysis here is at $118.26/acre.

The RMA dataset contains information about the indemnity payments and
the actual yield magnitudes of insured farmers at the crop unit level.
Indemnities were extracted from RMA's data on each insured's claims record
(Type 21 record) in 2000 and actual yield magnitudes were extracted from
each insured’s yield history record (Type 15 record) in 2001. The actual yield
is reported by the insured farmer in the following year's yield history record
(RY 2001 in our case) in order to compute the applicable APH for that year.
Thus, we have yield data for insured producers regardless of whether or not
they have submitted a claim and received an indemnity in RY 2000. The actu-
al yield data, coverage level, APH, and price election allows us to compute for
the loss magnitude ($/acre), defined as follows:

Loss Magnitude = APH*Price Election - Actual Yield*Price Election (9)

Using the RMA data on loss magnitudes and indemnities paid makes it possi-
ble to estimate an indemnification profile.

The resulting dataset used in the analysis has 175 observations with a
mean indemnity and mean loss magnitude of $138.89/acre and
$239.00/acre, respectively. The standard deviations are $6.16/acre and
$8.77 /acre for the indemnity and loss magnitude, respectively. Indemnity val-
ues ranged from zero to $219.5/acre and loss values ranged from zero to
$337.9/acre. The distribution of loss magnitudes and indemnities are report-
ed in Table 1 (see appendix). Furthermore, the resulting dataset had observa-
tions from the following states: Alabama, Florida, Georgia, Missouri, North
Carolina, South Carclina, and Texas.

The theoretical predictions in the previous section provide testable
hypotheses about the indemnification behaviour associated with each ex-post
moral hazard paradigm. The costly state verification framework predicts an
indemnification profile where there is a minimum payment of 7 for any claim
below some threshold m. In the case of crop insurance, 7= 0 and the thresh-
old m is determined by equation (8). All claims above the threshold level
should be fully insured so that the indemnity paid should equal to the actual
loss magnitude (less the deductible). In contrast, under the costly state falsi-
fication paradigm, the theoretical prediction is that small claims should be
overpaid and large claims underpaid, so that the slope for indemnity pay-
ments as a function of the loss magnitude should be less than one. Therefore,
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these are the two hypotheses that we wish to empirically test using the crop
insurance dataset.

Given these two hypotheses, we are interested in the empirical relationship
between the indemnities paid and the actual loss magnitude. A nonparamet-
ric regression technique called locally weighted regression (LOESS), which is
attributed to Cleveland {1979), is used here to estimate this relationship. We
use a nonparametric approach because we do not want to arbitrarily impose
a functional form on the relationship between indemnities and actual loss
magnitudes. Furthermore, this nonparametric technique smoothes the data
and is robust to potential outliers (Cleveland, 1979; Hardle, 1990). LOESS
compromises between a global assumption of functional form and purely local
averaging by using a weighted least squares algorithm. LOESS accommodates
data of the form:

Y, = glx)+eg (10)

where g is a smooth regression function and g is a random error with mean
zero and a constant scale. In our case, the dependent variable y represent the
indemnity paid and the independent variable x represents the loss magnitude.

The ‘ocal’ part of LOESS refers to a ‘k-nearest neighbor (K-NN)’ type neigh-
borhood. The K-NN is specified as a proportion a of the n data points to be
used at each point of estimation. There are a variety of methods to choose the
proportion or ‘bandwidth’ («) in a LOESS procedure. Many of these methods
choose a smoothing parameter which minimizes a criterion that incorporates
both tightness of fit and model complexity of the form

In(5*)+ (L) (11)

where §3s an average residual sum of squares and () is a penalty function
designed to decrease with increasing smoothness of fit. Here L is the smooth-
ing matrix of the method. This matrix satisfies §j = Ly, where y is the vector
of observed values and jj is the corresponding vector of the predicted values.
Examples of specific criteria obtained with this methodology are generalized
cross-validation (Craven and Wahba, 1979), the classical Akaike Information
Criterion (AIC) (Akaike, 1973), and the bias correcied Akaike Information
Criterion (Hurvich and Simonoff, 1998).

Here the bias corrected Akaike Information Criterion (BAIC) is used to
choose the appropriate smoothing parameter. This criterion is given by:

BAIC = nin(s?)+ n L2+ V1) (12)
a1 /52 -2

where n is the number of observations, 8 = Trace(I -L)' (- L), 8, = Trace

[ - LY{I - L)* andv, = Trace(. This criterion was chosen because Hurvich and
Simonoff (1998) has shown that the BAIC avoids the tendency to undersmooth
that often occurs when using the classical AIC or generalized cross-validation.
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In Figure 3, we see that the bandwidth with the lowest BAIC (BAIC = 1152.26)
is at 0.46 and, thus, this is the bandwidth we use for the LOESS.
For each value of x, the n points are ranked according to the absolute value

of their distance from x, and the k = an nearest points are identified. Let
d = |x; - x| be the distance from x, to the kth nearest neighbour x.. A weight-

ed least squares linear regression is fitted to the an points. The weights
w,(x;) decrease as the distance from x, increases:

W, (x,) = Wid " (x, — x,)) {13)

where dlis the inverse of d, (x, - x) is the distance of the mth observation (m
= 1,...,K) from x, and W is the tricube weight function W(u}=(1-u")}®. Thus,
points close to (far from) x; play a large (small) role in the determination of the
fitted y; values. Increasing the neighborhood of points influencing the fitted
values increases the overall smoothness of the smoothed points.

Fitted values for each target value are estimated using a first-order polyno-
mial (or a linear function) for the defined neighborhood using weighted least
squares. Choosing a polynomial of degree 1 is appropriate because it strikes a
balance between computational ease and the need for flexibility to reproduce
patterns in the data (Cleveland, 1979), Thus, the §’s are chosen to minimize:

mem(xf)(ym _BO _61xm]2 (14)
Note that the f(x) values are estimated for each target x,.

Figure 3. Bias-corrected Akaike Information Criterion (AIC)
at different bandwidths
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Fitted values for (y,x) are computed from the j vector that minimizes equa-
tion (10) and corresponding regression residuals are also computed. The
model is made robust’ by using computed residuals to reweigh values in the
neighborhood of the target values. New weighted least square values are esti-
mated and the procedure iterated to estimate the LOESS fitted values.
Outliers have smaller robustness weights and do not play a large role in the
estimation of fitted values. In summary, LOESS is a nonparametric curve fit-
ting method that starts off with a local polynomial least squares fit and then
attempts to make the estimate more robust by using weights from the local
neighborhood around the observation point. This procedure gives us a graph-
ical indemnification profile that allows us to evaluate whether the crop insur-
ance data coincides with the costly state verification or costly state falsifica-
tion model.

4. RESULTS AND DISCUSSION

The estimated indemnification profile and the scatterplot of the data suggests
that there seems to be no payments for losses below the threshold level
{$118.26/acre) and losses above the threshold level seems to be fully indem-
nified (Figure 4). At the chosen bandwidth level {46 per cent), the estimated
indemnification profile above the threshold level is very close to 45 degrees.
This suggests full indemnification at levels above m. Furthermore, the scat-
terplot shows that loss magnitudes less than m received zero indemnities. This
finding supports the costly state verification paradigm more than the costly
state falsification paradigm.

Figure 4. Smoothed indemnification profile and scatter plot of indemnity vs.
actual loss magnitude [bandwidth = 0.46; APH = 545; deductible = $118.26].
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To verify the sensitivity of our estimated profile to changes in the choice of
the bandwidth, we also ran the LOESS estimation procedure at o = 36 per cent
and a = 56 per cent. The estimated indemnification profile at o = 36per cent
and o = 56 per cent is still very similar to the estimated profile at the ‘optimal’
bandwidth based on the BAIC (Figure 5A and 5BJ. Thus, the profile is robust
to small deviations from the bandwidth chosen using the BAIC.

Figure 5. Smoothed indemnification profile and scatter plot of indemnity
vs. actual loss magnitude:
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Figure 6. Smoothed indemnification profile and scatter plot of indemnity vs.
actual loss magnitude [where loss magnitude is above the deductible]:
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In Figures 4 and 5, all the observations are included in the LOESS estima-
tion of the profile, including the observations with zero indemnities. In Figure
6, we estimate the indemnity profile only for observations above the threshold
level to remove the possible effects of the zero indemnity values in the estima-
tion. This allows us to further explore if there is full indemnification above the
threshold level. Bandwidth levels at 0.36, 0.46, and 0.56 are used for this
LOESS estimation. In general, the estimated profiles still support the costly
state verification paradigm. The estimated profiles in Figure 6 also show that
there is a tendency for overpayment of losses at the lower loss magnitudes just
above m. This behaviour may be due to the two cases of substantial overpay-
ment at the lower loss levels. However, the estimated profiles still exhibit full
indemnification at the higher loss levels even if there are two cases of under-
payment at the higher loss levels. Therefore, Figure 6 suggests an indemnifi-
cation behaviour of overpayments at the lower loss levels and full indemnifi-
cation at the higher loss levels, for the monitoring region above the deductible.
This type of indemnification behaviour is not supported by either the pure
costly state verification paradigm or the pure costly state falsification para-
digm discussed in the second section of this paper.5 Nevertheless, the pres-
ence of full indemnification at the higher loss magnitudes and no indemnity
payments below m more closely supports the costly state verification paradigm
rather than the costly state falsification paradigm.

In summary, crop insurance indemnification behaviour appears to follow
the theoretical predictions of the costly state verification paradigm. This
result is consistent with Hyde and Vercammen {1997) where they argue that
the costly state verification paradigm is more in line with actual Crop insur-
ance contract form. However, their result is only based on observed features
of existing crop insurance contracts and not on actual indemnification behav-
iour. This paper shows that actual indemnities paid (based on RMA data) do
indeed more closely follow the costly state verification paradigm. Based on this
result, it seems that this paradigm is deemed by the federal crop insurance
pelicy makers to be an optimal contract design to help mitigate fraud behay-
itour by insured crop producers.

5. CONCLUSIONS AND POLICY IMPLICATIONS
This paper explores whether actual crop insurance indemnity payments more
closely conform to the theoretical predictions of either the costly state verifi-
cation or the costly state falsification models. Using a nonparametric regres-
sion technique to estimate the crop insurance indemnification profile for non-
irrigated cotton, we found that actual behaviour is more in line with the cost-
ly state verification paradigm than the costly state falsification paradigm.
The results indicate that insurers seem to indemnify based on the assump-
tion that it is possible to verify actual loss magnitude and eliminate the infor-
mational asymmetry of the farmer. In crop insurance, losses are indeed veri-
fied through crop insurance loss adjusters. Given the existence of a way to ver-
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ify losses, indemnification based on the costly state verification paradigm
seems to be optimal to deter ex post moral hazard. However, the optimal
indemnification predicted under the ‘pure’ costly state verification paradigm
discussed here assumes that farmers cannot deceive the loss adjusters and
adjusters always truthfully report the actual loss magnitudes (i.e. insured pro-
ducers cannot manipulate monitoring costs to deceive adjusters). These
assumptions are not necessarily true and, thus, may influence the applicabil-
ity of using the optimal predictions of the ‘pure’ costly state verification model
o deter ex post moral hazard in crop insurance.

For example, the optional unit provision of the crop insurance program,
which allows a farmer to divide his farm into several insurable units, makes it
very difficult for adjusters to verify actual yield losses on the farm. A farmer
can easily shift bushels from one unit to the next and it is very difficult to ver-
ify which bushels truthfully came from which insurable unit. Furthermore, if
farmers were able to collude with agents and adjusters to falsify the magni-
tude of losses then truthful verification would be impossible. There has been
anecdotal evidence that these situations are present in crop insurance, which
indicates that following the theoretical predictions of the ‘pure’ costly state
verification model may not reduce incentives for fraud behaviour and, hence,
may not be the optimal contract design to deter fraud.

These examples show that there may be room for further study of more
appropriate contract forms or indemnification schedules when there is a pos-
sibility for insureds to manipulate the truthful verification of loss magnitudes,
as is probably the case in crop insurance. Recent studies by Bond and Crocker
(1997) and Picard (2000) have extended the costly state verification model to
consider the possibility of manipulating monitoring costs by insureds. Indeed,
the extension of Bond and Crocker (1997) may possibly support the behaviour
of overpayment in the lower loss magnitudes (within the monitoring region}
observed in our results. However, more in-depth study of existing extensions
of the costly state verification model is still needed to ascertain which partic-
ular indemnification profile may be optimal for crop insurance. Moreover,
studies of contract forms to deter collusion of insured producers and adjusters
may also help in determining the optimal contract to deter fraud in crop insur-
ance.

Accepted for publication: 11 February 2003
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APPENDIX

Table 1. Distribution of loss magnitude (x) and indemnity (y)
for cotton, 2000

Range Loss Magnitude ($/ acre)
Cumulative
Mean St Dev  Frequency percentage, %

<100 5.10 2,95 27 15.43
100 < x < 200 158.08 6.67 21 27.43
200 < x < 300 254.73 4,477 44 22.57
300 < x < 400 327.22 1.19 83 100.00
Range Indemnity ($/ acre)

<50 5.67 2.07 37 21.14
50 <y < 100 76.54 3.74 16 30.29
100 <y < 150 126.54 2.85 22 42.86
150 <=y < 200 179 87 241 38 64.57
200 <y < 250 213.75 0.71 62 100.00

ENDNOTES

1. Assistant Professor, Department of Agricultural and Applied Economics, Texas Tech
University, Box 42132, Lubbock, TX 79409-2132. E-mail: roderick.rejesus@ttu.edu. I
wauld like to thank Mike Cross for providing the dataset used in this analysis. Helpful
comments from Gary Schnitkey, Tom Knight, and the participants of the 2002 SERA-
IEG meetings are also greatly appreciated. The author is, of course, responsible for all
remaining errors.

2. Knight and Coble (1997) give an excellent review of the crop insurance literature
since 1980, including a review of the literature on moral hazard in crop insurance.

3. In this case, a farmer exerts effort to physically alter apparent yield and alter the
magnitude of the loss. This can be done in a variety of ways such as feeding grain to
stock, hiding grain off-farm, hiding grain in concealed on-farm storage, collude with
adjusters to alter loss magnitude, and/or selling part of the production in the name of
a relative (i.e. son-in-law, son).

4. The analysis here was also applied to data with other APH levels aside from the one
reported in this paper. However, the reason for choosing the particular APH, price elec-
tion, and coverage level combination reported in this paper is because it is the one with
the highest number of observations. Note that the results of the analysis for other APH
levels are similar to the results reported. These results are available from the author
upon request.

5. Although this indemmnification behaviour is not supported by the 'pure' costly state
verification model, theoretical predictions of a special case of the costly state verifica-
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tion paradigm somewhat follows the observed behaviour here. Bond and Crocker
(1997} showed that full indemnification at the higher loss states within the monitoring
region and overpayment at the lower loss states within the monitoring region may be
an optimal contract when the insured can manipulate the costs of monitoring and
when the insurer can observe the actual cost of monitoring. Note that in the 'pure’ cost-
ly state verification model it is assumed that farmers cannot take actions that have the
effect of manipulating the monitoring cost.
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